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Abstract. Heavy–fermion formation in transition metals and transition–metal oxides is reviewed and com-
pared to observations in canonical f–derived heavy–fermion systems. The work focuses on the dynamic
susceptibilities which reveal a characteristic temperature and frequency dependence and which can be un-
ambiguously determined via nuclear magnetic resonance and electron–spin resonance measurements as well
as via quasielastic neutron–scattering studies. Different routes to heavy–fermion behaviour are discussed,
amongst them Kondo systems, frustrated magnets, and electronically correlated systems close to a metal–
insulator transition. From a theoretical point of view, utilizing dynamical mean–field theory, we show that
dynamic susceptibilities as calculated for the Hubbard model and for the periodic Anderson model look
qualitatively rather similar. These different theoretical concepts describe an universal behaviour of the
temperature dependent dynamic susceptibility.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 71.30.+h Metal-insulator
transitions and other electronic transitions – 76.60.-k Nuclear magnetic resonance and relaxation –
76.30.Kg Rare-earth ions and impurities

1 Introduction

Since the discovery of an enormously enhanced linear term
of the heat capacity C = γT , with γ = 1620 mJ/(molK2)
and a concomitantly enhanced Pauli–like spin suscepti-
bility (χ0 = 0.036 emu/mol) in CeAl3 [1], strongly cor-
related electron systems with a quasi–particle mass en-
hancement of m∗/m ≈ 102− 103 are in the focus of solid–
state physics. While in the early times mainly 4f - and 5f -
derived heavy fermions like the heavy–fermion supercon-
ductor CeCu2Si2 [2] were investigated, the main interest
recently turned towards transition metals and transition–
metal oxides also revealing strongly enhanced Sommerfeld
coefficients γ and spin susceptibilities χ0. Recent examples
are Sc doped YMn2 [3,4] and LiV2O4 [5–7]. These 3d–
metals compounds are Fermi liquids, with an enhanced
linear term of the heat capacity, and an enhanced almost
constant susceptibility towards low temperatures. In ad-
dition, the resistivity ρ is dominated by electron–electron
interactions yielding a quadratic temperature dependence
ρ = A × T 2 with A satisfying the Kadowaki–Woods rela-
tion [8], A/γ2 = 10−5 µΩ cm/K2 which holds for a variety
of strongly correlated Fermi liquids. At the same time the
Wilson ratio, RW = (π2k2

B/3µ2
Bµ0) × χ0/γ [9,10] is be-

tween 1 and 2, again characteristic for correlated electron
a e-mail: norbert.buettgen@physik.uni-augsburg.de

systems. The Wilson ratio is thought to distinguish the
enhancement of γ resulting from spin fluctuations via the
Stoner mechanism, from the regular mass enhancement
due to a high electron density of states. And while all of
these compounds show the characteristics of heavy Fermi
liquids, it is clear that the routes to the formation of heavy
quasi–particle masses must be very different.

It is the aim of the present investigation to study
this heavy–fermion formation in d–metals and transition–
metal oxides in more detail. For this purpose we focus on
the dynamic susceptibility which reveals a characteristic
temperature dependence and can be directly studied em-
ploying inelastic neutron scattering (INS), electron–spin
resonance (ESR) and nuclear magnetic resonance (NMR)
techniques. Experimental results on a variety of systems
are reviewed and compared with recent theoretical inves-
tigations. Thereby we want to work out universalities in
the heavy–fermion formation but also to find differences
which allow to classify different classes of compounds. Dif-
ferent scenarios of heavy–fermion behaviour have previ-
ously been discussed by Fulde [11]. In that work Kondo
lattices, localized spins in a sea of strongly correlated elec-
trons, and examples of charge–ordering systems have been
discussed.

After briefly reviewing the main observations in canon-
ical f–derived heavy–fermion systems we shall discuss a
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Table 1. Compounds with enhanced Sommerfeld coefficients γ and enhanced Pauli spin susceptibilities χ0 (SI values in
m3/mol are obtained after multiplying χ0 by 4π × 10−6). Here all systems are listed which reveal a Sommerfeld coefficient
larger than 39 mJ/(mol K2). For Gd0.8Sr0.2TiO3, the susceptibility χ0 is not determined (nd) because the dominant Curie–type
contribution of the Gd–Spins masks the Pauli spin susceptibility. The route to heavy–fermion formation is indicated originating
from magnetic frustration (F), Kondo–lattice behaviour (KL), quantum critical point (QCP), or metal–to–insulator transition
(MIT), respectively. The question mark denotes conflicting statements in the literature (see text).

γ(mJ/(mol K2)) χ0(×10−3 emu/mol) Character Reference

LiV2O4 490 11 F/KL (?) (Brando et al. 2002) [7]

LiV2O4 350 9 F/KL (?) (Urano et al. 2001) [6]

Y(Sc)Mn2 160 1.4 F (Nakamura 1988) [4]

CaRuO3 77 0.7 QCP/MIT (?) (Cao et al. 1997) [41]

β-Mn 70 0.5 F (Nakamura et al. 1997) [37]

Gd0.8Sr0.2TiO3 50 nd MIT (Heinrich et al. 2002) [22]

Sr2RuO4 39 0.97 MIT/QCP (?) (Maeno et al. 1994) [42]

number of d–metals or transition–metal oxides which can
be grouped into different schemes. The formation of heavy
fermions seems to be a common feature to systems with
strong spin fluctuations, i.e. Kondo–lattice compounds
(KL), systems close to a metal–to–insulator transition
(MIT), frustrated magnets (F), and materials in the vicin-
ity of a quantum critical point (QCP). Table 1 lists some
compounds which can be grouped using these classifica-
tions and will be studied in detail in this paper. All of these
compounds are highly correlated Fermi liquids with a T 2

temperature dependence of the resistivity, an enhanced
Sommerfeld coefficient, and an enhanced Pauli–like spin
susceptibility. Figure 1 shows the Wilson ratio RW versus
the magnetic susceptibility on a double–logarithmic plot.
The free–electron gas has a Wilson ratio RW = 1, an iso-
lated Kondo ion yields RW = 2, correlated metals are
expected between 1 ≤ RW ≤ 2, and the Brinkman–Rice–
Gutzwiller spin liquid gives RW = 4 [12]. Values of the
Wilson ratio above 2 have also been found in calculations
for the Hubbard model [13]. And indeed, all compounds
documented in Figure 1 reveal values between 0.5 and 4.
Values smaller than 1 are expected, if the Landau Fermi–
liquid parameter is negative. It is interesting to note that
there exists a clear correlation in the data shown in Fig-
ure 1: the larger the susceptibility χ0 the larger the Wilson
ratio RW .

Experimental results for these compounds are de-
scribed in detail in Section 2. Section 3 introduces a theo-
retical approach for the microscopic understanding of the
spin dynamics of Kondo lattices and systems close to a
Mott transition. The paper is summarized in Section 4.

2 Experimental results

In this section, we give an overview on results in transi-
tion metals and transition–metal oxides obtained in our
laboratory, but we also refer to published work. Before
doing so, we briefly discuss the heavy–fermion formation
in canonical f–derived compounds.
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Fig. 1. Wilson Ratio versus susceptibility. Open and solid
symbols denote d– and f–derived compounds, respectively. pc:
polycrystal, sc: single crystal. For the susceptibility data of
UPt3 the directions of the magnetic field with respect to uni-
axial crystal symmetry are indicated [15].

2.1 Kondo lattices

In 4f– and 5f–derived compounds, experimental work
has been performed for almost 30 years and an incred-
ible amount of data is available, most of which is re-
viewed in the work by Stewart [14], Ott [10], and Grewe
and Steglich [15]. In Kondo lattices an enormously en-
hanced effective mass results from an interplay between
the local Coulomb repulsion within the f–states and the
hybridization between f– and band states. At high tem-
peratures the local moments are not screened yielding a
Curie–Weiss–like paramagnetism. However, below a char-
acteristic temperature T ∗ the local moments of the f–shell
are quenched and a heavy Fermi liquid with a strongly
enhanced linear term of the heat capacity and a concomi-
tantly enhanced Pauli spin susceptibility is formed. It is
the general believe that spin fluctuations are responsible
for the collective compensation of the local moments.
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Dynamic susceptibilities in Kondo compensated heavy
fermions have been studied in detail by neutron scat-
tering [16], NMR [17] and ESR techniques [18]. The
fluctuation–dissipation theorem provides the important
relation between the imaginary part of the dynamic sus-
ceptibility χf (Q, ω, T ) and the fluctuating magnetization
Mf (Q, t) of the Kondo ions.

1
2

∫ +∞

−∞
〈Mf(Q, 0)Mf (Q, t)〉T exp(iωt)dt =

Imχf (Q, ω, T )
1 − exp (−�ω/kBT )

· (1)

On the right–hand side, the term [1 − exp (−�ω/kBT )]−1

is the detailed–balance factor. The left–hand side
is the Fourier–transformed thermal average of the
magnetization–correlation function 〈...〉T , which is propor-
tional to the dynamic structure factor S(Q, ω, T ) mea-
sured by quasi–elastic neutron scattering (QNS) at mo-
mentum transfer Q and energy transfer �ω [16].

The dynamic susceptibility can be measured not only
via the dynamic structure factor S(Q, ω, T ) in neutron–
scattering experiments, but also via the spin-lattice relax-
ation rate 1/T1 in NMR experiments and via the linewidth
∆H at resonance absorption using ESR techniques. NMR
probes the spin–lattice relaxation rate (1/T1)NMR of an
appropriate nuclear spin in the neighbourhood of the
Kondo ion. ESR measures the resonance linewidth ∆HESR

of a paramagnetic ion with a stable magnetic moment
(e.g. Gd3+ in the systems discussed here), a few percent
of which has to be doped into the Kondo–lattice com-
pound, because the spins of the Kondo ions fluctuate too
fast to give a detectable ESR signal. The ESR linewidth
represents the transversal spin–relaxation rate (1/T2)ESR

of the ESR probe which in metals equals the longitudinal
or spin–lattice relaxation rate (1/T1)ESR. The dynamic
susceptibility of the Kondo ion is transferred to NMR and
ESR probes by RKKY–like indirect exchange interactions
via the conduction electrons. Hence NMR relaxation rate
(1/T1)NMR and ESR linewidth ∆HESR can be related to
the dynamic structure factor S(Q, ω, T ) of QNS in the
high–temperature approximation (kBT � �ω) and ne-
glecting the Q dependence [19]:

S (ω, T ) ∝ T

ω
Imχf (ω, T ) ∝ (1/T1)NMR ∝ ∆HESR. (2)

From an experimental point of view, the frequency depen-
dence of the dynamic susceptibility can be described using
a purely relaxational ansatz for the correlation function in
equation (1). Then the imaginary part of the dynamic sus-
ceptibility is of Lorentz shape centered at ω = 0,

Imχf (ω, T ) =
ωΓ

ω2 + Γ 2
χstat

Γ�ω−→ ω

Γ
χstat (3)

with the magnetic relaxation rate Γ (= quasi–elastic
linewidth) and the static susceptibility χstat of the Kondo
ions. Of course, in QNS experiments the dynamic sus-
ceptibility can be studied as a function of temperature
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Fig. 2. Temperature dependence of the NMR relaxation rate
1/T1 of 63Cu and ESR linewidth ∆H in CeCu2(Si1−xGex)2,
respectively (NMR data of CeCu2Si2 are taken from
Asayama [17]; ESR data obtained after doping with 1% Gd3+

at the Ce site). Additionally, 1/T1 of 7Li in LiV2O4 and ∆H
of Gd3+ ESR in Gd1−ySryTiO3 are shown. The solid lines
are fits which are described explicitly in references [22,24] (see
Sect. 2.2).

and within a very broad frequency range, whereas NMR
and ESR are always working at fixed frequency ω0 in the
MHz to GHz range, respectively. This corresponds to the
low-energy transfer limit indicated on the right–hand side
of equation (3), because the experimental frequencies are
small compared to the quasi–elastic linewidth which is of
the order of the characteristic temperature T ∗.

In a typical heavy–fermion compound at temperatures
T � T ∗, the spins of the Kondo ions are completely
screened by the conduction electrons; a large Pauli–like
susceptibility χ0 = const. and a large, temperature inde-
pendent relaxation rate Γ ≈ T ∗ yield a strongly enhanced
Korringa–like increase of expression (2) with temperature.
This is followed by a decrease at temperatures T > T ∗,
where the static susceptibility follows a Curie–Weiss law
χstat ∝ (T + αT ∗)−1 with α =

√
2 [20] and the relaxation

rate Γ increases according to Γ ∝ √
T [21].

Figure 2 shows 1/T1 as observed in the heavy–fermion
superconductor CeCu2Si2 [17] and in CeCu2(Si1−xGex)2
(upper frame), and ∆H as observed via Gd–ESR in
CeCu2Si2 (lower frame). These results, which are typ-
ical for f–derived Kondo-lattices, are compared to the
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temperature dependence of the spin–lattice relaxation rate
in LiV2O4 [7], which has been termed the first d–derived
heavy–fermion metal [5], and to the ESR linewidth at
resonance absorption in Gd1−ySryTiO3 [22] for differ-
ent concentrations on the metallic side of the metal–to–
insulator transition. Starting from high temperatures, all
compounds investigated show a Curie–Weiss type increase
towards lower temperatures, a maximum at the charac-
teristic temperature T ∗ and a linear Korringa–type relax-
ation at lowest temperatures. This behaviour is exactly
what is expected within the ansatz outlined above. To
describe the NMR and ESR data for the 4f -derived com-
pound CeCu2(Si1−xGex)2, an additional linear Korringa
term was added to equation (3). Such a term is due to
the direct relaxation contribution of the conduction elec-
trons [23] and is observed in all metals (indicated at the
bottom of Fig. 2). Its slope is proportional to the squared
electronic density of states at the Fermi level N2(EF). The
different ratio of the direct Korringa contribution and the
Kondo fluctuations observed for ESR and NMR reflects
the strong dependence of the RKKY interaction on the
distance between the magnetic resonance probe and the
Kondo ions [24]. This result underlined the local character
of the hybridization in canonical f–derived Kondo lattices.
The fit curves for Gd1−ySryTiO3 were calculated using the
phenomenological spin–fluctuation model by Ishigaki and
Moriya [25,26] which will be described in the following
subsection.

2.2 Heavy fermions at the metal–to–insulator
transition

The critical behaviour of the electronic specific heat close
to a MIT is experimentally well established. Well known
examples are doped LaTiO3 and YTiO3 [27]. These com-
pounds are just on the insulating side of the Mott–
Hubbard transition and a MIT can easily be induced by
doping small amounts of Sr or Ca. Recently, the crit-
ical increase of the Sommerfeld coefficient at the MIT
has also been detected in Sr-doped GdTiO3 [22]. Pure
GdTiO3 is a ferrimagnetic Mott insulator. A metallic
ground state is induced on substituting 20% of Gd by
Sr. On approaching the MIT from the metallic side the
Sommerfeld coefficient strongly increases reaching values
of almost 60 mJ/(molK2) [22]. The dynamic susceptibil-
ity of this system has been studied using Gd–ESR at X-
band frequency [22]. Some representative results of the
linewidth ∆H within the metallic regime 0.2 ≤ y ≤ 0.6
are shown in the lower frame of Figure 2. Starting at
low temperatures the linewidth increases linearly, passes
through a maximum close to the characteristic tempera-
ture T ∗, and reveals a Curie-Weiss like behaviour at higher
temperatures. Approaching the MIT from the metallic
side (y ≥ 0.2), the prominent maximum in ∆H(T ) in-
creases and shifts to lower temperatures T ∗. This be-
haviour strongly resembles the relaxation contribution of
the Kondo ions in the typical heavy–fermion compounds.
Instead of the Kondo f–ions, the Ti3+ (3d) spin system ex-
hibits fluctuations which are transferred to the Gd spin via

super–exchange interactions. For an appropriate descrip-
tion of the dynamic susceptibility the itinerant character
of the Ti electrons has to be taken into account, follow-
ing Ishigaki and Moriya [26], who developed a theoreti-
cal description of nuclear magnetic relaxation around the
magnetic instabilities in metals. Their results were used to
explain the NMR relaxation rate in Ca1−xSrxRuO3 [28]
discussed below and have been modified for the ESR re-
sults in Gd1−ySryTiO3 as described in reference [22]. In-
serting this dynamic susceptibility in equation (2) yields
for the ESR linewidth

∆H ∝ 3Ty2

2(y3 + h)
· (4)

The reduced inverse 3d susceptibility y is given by an im-
plicit integral equation [26], which has to be iterated nu-
merically. Its two characteristic parameters are correlated
with the inverse static susceptibility at zero temperature
and the energy width of the dynamical spin–fluctuation
spectrum. The parameter h ∝ H2 accounts for the in-
fluence of the applied magnetic field H . The resulting fit
curves are drawn as solid lines in the lower frame of Fig-
ure 2. In Section 3 we show that the characteristic temper-
ature dependence of the dynamic susceptibility can also be
obtained qualitatively using microscopic models.

2.3 Heavy–fermion formation in frustrated magnets

Frustrated magnets are systems which cannot minimize si-
multaneously all the pairwise magnetic interactions due to
geometrical constraints. In three dimensions, pyrochlores
are good examples of frustrated magnets. They reveal ex-
otic ground states like spin liquids or spin–ice states [29].
In pyrochlores, local spins with antiferromagnetic (AFM)
interactions are located on ideal tetrahedral lattice sites.
Due to geometrical constraints long–range magnetic or-
der (strictly speaking only Ising spins with AFM near-
est neighbour interactions are frustrated) is suppressed
and in some compounds the Curie-Weiss behaviour can
be observed down to the lowest temperatures. LiV2O4

and Y(Sc)Mn2 exhibit an ideal tetrahedral arrangement
of the 3d spins. In the case of lithium–vanadate it is
believed that one vanadium t2g electron per lattice site
forms a localized moment, while 0.5 electrons per site
represent the band states. Both compounds reveal very
high Sommerfeld coefficients of the specific heat, reach-
ing approximately 0.5 J/(molK2) for LiV2O4 [5–7] and
0.16 J/(molK2) for Y(Sc)Mn2 [3]. While Y(Sc)Mn2 was
treated as frustrated magnet from the very beginning,
LiV2O4 has also been explained as Kondo-compensated
heavy–fermion system, where the spin of the local mo-
ment is screened by the band states [30]. The significant
difference to f–derived heavy fermions certainly is that
both the localized moments and the conduction electrons
are derived from the vanadium d–states. However, many
authors view the magnetic frustration as important ingre-
dient of the heavy–fermion formation [31–36].

The temperature dependence of the dynamic suscep-
tibility as measured via the 7Li spin–lattice relaxation [7]
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is shown in Figure 2 and compared to the Cu–NMR re-
sults of pure and Ge-doped CeCu2Si2 where the maxi-
mum temperature Tmax in the temperature dependence
of 1/T1(T ) turns out to give the characteristic tempera-
ture T ∗ (Tmax ≈ T ∗). This typical temperature depen-
dence can be explained assuming a Curie–Weiss type sus-
ceptibility with a non–zero Curie–Weiss temperature and
a weakly temperature dependent magnetic relaxation rate
Γ [19]. Such a weak temperature dependence of Γ is typ-
ical for frustrated magnets [37], whereas in the case of
Kondo lattices it is only constant below T ∗ but follows
a square–root behaviour Γ (T ) ∝ √

T at elevated tem-
peratures [21]. At this point we would like to state that
this temperature dependence of the dynamic susceptibility
can also well be fitted using Moriya’s spin–fluctuation the-
ory [25]. And already very early Fujiwara et al. described
1/T1(T ) in LiV2O4 using this approach [38].

A further example of a frustrated magnet with heavy–
fermion formation is β–Mn with a Sommerfeld coeffi-
cient of 70 mJ/(molK2) and a static susceptibility χ0 =
0.5 × 10−3 emu/mol [37]. β-Mn, which easily can be ob-
tained by quenching, does not reveal magnetic order down
to the lowest temperatures and has been characterized
as a spin liquid due to geometrical frustration [37]. A
number of NMR experiments have been conducted in
β−Mn [37,39]. As there are two crystallographically in-
equivalent sites, the 55Mn spin–lattice relaxation rate 1/T1

has been measured at both sites. 1/T1(T ) as obtained at
site II revealed a square–root dependence on temperature
for temperatures 3 K ≤ T ≤ 150 K [39]. In the framework
of Moriya’s spin–fluctuation theory [26], this experimental
observation was taken as an indication that β–Mn is close
to an AFM quantum–critical point (QCP). Later on the
spin–lattice relaxation of site I has been investigated for
temperatures 2 K ≤ T ≤ 100 K [37]. The overall temper-
ature dependence of 1/T1 looks very similar to the exam-
ples displayed in Figure 2. However, below 40 K the results
have been parameterized using a square–root dependence
of the relaxation rate on temperature [37], indicative for a
system close to an AFM quantum–critical point. Very re-
cently, non–Fermi liquid effects were also observed in the
temperature dependence of the electrical resistivity, with
ρ ∼ T 3/2, again corresponding to a nearly AFM metal [40].

2.4 Further d-derived heavy fermions

A number of further heavy–fermion liquids have
been observed in transition–metal oxides. For exam-
ple, Sr1−xCaxRuO3 has been investigated in detail by
Yoshimura et al. [28] using 17O NMR. SrRuO3 is an
itinerant ferromagnet with a magnetic ordering temper-
ature Tc = 160 K. CaRuO3 is a highly correlated non–
magnetic metal characterized by a Sommerfeld coefficient
of 73 mJ/(mol K2) [41]. It is assumed that CaRuO3 is
close to a ferromagnetic (FM) QCP. On doping Ca into
SrRuO3 ferromagnetism is suppressed close to x = 0.7.
The temperature dependencies of the 17O spin-lattice re-
laxation rate in Sr1−xCaxRuO3 have been measured for
Ca concentrations x = 1, 0.6 and 0. In pure SrRuO3, 1/T1

reveals a peak–shaped anomaly at the FM phase transi-
tion. However, for x = 0.6 and x = 1 the spin–lattice relax-
ation rate 1/T1(T ) resembles the characteristics of heavy
fermions like the systems which are displayed in Figure 2.
For both compounds, the characteristic temperatures as
determined by the maximum in 1/T1(T ) is high and close
to or even above room temperature. Again, utilizing the
spin–fluctuation theory [26] the experimental results for
x = 0.6 and 1 were reasonably described assuming the
systems close to a FM instability [28].

Finally, it is worth to mention the layered per-
ovskite Sr2RuO4 which probably reveals triplet–
superconductivity below 1.5 K [42]. Sr2RuO4 is an
almost two–dimensional Fermi liquid with a Sommerfeld
coefficient of 39 mJ/(mol K2) and an enhanced spin
susceptility of 0.97 × 10−3 emu/mol [43]. In neutron–
scattering studies it has been demonstrated that the
relaxation rate Γ of the generalized susceptibility reveals
a large residual value of 8 meV, which is a measure
of the characteristic temperature T ∗ of the system.
Measurements of the nuclear spin–lattice relaxation rate
1/T1 at the planar O(1) site and at the Ru site have
been performed by Imai et al. [44] for temperatures
2 K ≤ T ≤ 500 K. Both temperature dependencies
reveal the characteristics of the dynamic susceptibility of
strongly correlated electron systems and a characteristic
temperature of T ∗ = 80 K has been determined in
good agreement with the neutron–scattering result. The
mechanism for the enhancement of the quasi–particle
masses is unclear at present. However, Sr2RuO4 is very
close to magnetic order and to a MIT [45,46]. So, a QCP
as well as a MIT could be the underlying mechanism for
the heavy–fermion formation.

3 Theory for the dynamic spin susceptibility

It is evident from the discussion in Section 2 that the dif-
ferent routes to heavy–fermion behaviour also require the
use of different theoretical concepts. In some of the above
cases it is not even clear which microscopic model should
be used for a given material. An example which has been
intensively discussed recently is LiV2O4, for which a num-
ber of different scenarios have been put forward [30–36].

Here we do not want to give a detailed overview of the
theoretical approaches for all the routes discussed above.
Instead we describe an approach, relevant for the heavy–
fermion formation in 2.1 and 2.2, which gives direct infor-
mation on the full frequency dependence of the dynamic
susceptibility. This allows to reproduce qualitatively the
temperature dependence of relaxation rate and linewidth
in Kondo lattices and also the doping dependence in the
case of Gd1−ySryTiO3.

Let us start with the Hubbard model [47] as a micro-
scopic model for the Mott-transition in Gd1−ySryTiO3

H = −t
∑
〈ij〉σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

c†i↑ci↑c
†
i↓ci↓. (5)
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In the model (5), c†iσ (ciσ) denote creation (annihilation)
operators for a fermion on site i with spin σ up (↑) or
down (↓), t is the hopping matrix element and the sum∑

〈ij〉 is restricted to nearest neighbours. The second term
in (5) describes the local Coulomb repulsion U between
two electrons on the same lattice site.

The single-band Hubbard model (5) is certainly too
simplified to describe all the physics of the transition-
metal oxide Gd1−ySryTiO3 quantitatively. Nevertheless,
we expect a reasonable qualitative description of the
physics close to the Mott-transition within this model.

Our aim is to calculate the frequency, temperature,
and doping dependence of the dynamical spin susceptibil-
ity

χ(ω) = i

∫ ∞

0

dt eiωt 〈[Sz(t), Sz(0)]〉 · (6)

Here we show calculations performed within the frame-
work of the dynamical mean–field theory [13] (DMFT).
In this method, the electronic self–energy Σ(ω) is approx-
imated to be purely local, i.e., k-independent. The DMFT
gets exact in the limit of infinite dimensions [48] and is
believed to be a good approximation also for real three-
dimensional systems [13].

Within the DMFT, the self-energy of a lattice model
is calculated from an effective single–impurity Anderson
model

H =
∑

σ

εff
†
σfσ + Uf †

↑f↑f
†
↓f↓

+
∑
kσ

εkc†kσckσ +
∑
kσ

V
(
f †

σckσ + c†kσfσ

)
. (7)

The operators f
(†)
σ correspond to the fermionic operators

of a given site of the Hubbard model, while the surround-
ing medium is reduced to a dynamic mean field given by
the effective conduction band operators c

(†)
kσ . The effective

bath has to be determined self–consistently [13] which also
defines the parameter V and the dispersion εk in (7).

The calculation of Σ(ω) for the model (7) is a very
difficult many–body problem [13,20]. Recently, it has
been shown that the numerical renormalization–group
method (NRG), developed by Wilson for the Kondo prob-
lem [9,49], is a very powerful tool also for the effective
impurity model within the DMFT [50,51]. The NRG is
non-perturbative and can access arbitrarily small energy
scales — which is essential for the description of systems
with characteristic temperature scales of the order of 10 K
and below.

Technical details for the application of the NRG to the
Hubbard model and the periodic Anderson model have
been described in references [50,51]. After convergence of
the self-consistency cycle has been reached, the local spin–
susceptibility is calculated using the converged effective
single–impurity Anderson model. This quantity has pre-
viously been calculated for the doped Hubbard model us-
ing the quantum Monte–Carlo approach [52]. The focus of
reference [52], however, was on the intermediate tempera-
ture behaviour of the NMR relaxation rate, which shows
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Fig. 3. a) Zero-temperature spectral function for the Hub-
bard model with U/W = 2.0 and different dopings (δ = 0
corresponds to half–filling); b) imaginary part of the spin sus-
ceptibility Im χ(ω) for the same parameters as in a).

striking similarity to the one observed in the High–Tc–
compounds.

Let us first consider the results for the Hubbard model
equation (5). A semi–elliptic density of states is used for
the uncorrelated system and the Coulomb repulsion is set
to U = 2 W (W : bandwidth). For this value of U , the sys-
tem undergoes a metal–insulator transition, when the sys-
tem approaches half–filling (n → 1). This filling–induced
metal–insulator transition is similar in character as the
transition observed in Gd1−ySryTiO3; although the tran-
sition there occurs at a finite value of the doping δ ≈ 0.1.

Typical results for the spectral function are shown in
Figure 3a for dopings δ = 0.05, 0.12, 0.22 and tempera-
ture T = 0. Upon decreasing the doping, the lower Hub-
bard band moves away from the chemical potential and
the width of the quasiparticle peak decreases significantly.
This corresponds to the enhancement of the effective mass
on approaching the MIT. Note also that the increase of the
effective mass m∗ is not associated with an increase of the
density of states at the Fermi level (the linear dependence
m∗ ∝ N(EF) only holds in the non-interacting case). In
the case of interacting electrons studied here, the increase
in the specific heat coefficient γ (and hence the increase in
m∗) can be understood from the temperature evolution of
the spectral function. Upon increasing the temperature up
to, let’s say, ten times the low-temperature scale T ∗, the
quasi–particle peak is almost completely destroyed (see
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Fig. 4. a) Frequency dependence of the imaginary part of
the spin susceptibility for the Hubbard model (U/W = 2.0,
δ = 0.05) at different temperatures T/W ; b) temperature de-
pendence of the relaxation rate 1/T1 as calculated from equa-
tion (2) for different fillings.

also Fig. 5). This corresponds to a significant change in
the entropy of the system within a very small tempera-
ture range, corresponding to the large γ-values observed
experimentally.

The results for the imaginary part of the spin-suscepti-
bility Im χ(ω, T = 0) are shown in Figure 3b for the
same set of parameters. For small frequencies, the imag-
inary part is linear in ω with a slope which is propor-
tional to (m∗)2. Im χ(ω, T = 0) shows a maximum at a
frequency ω∗ which is proportional to (m∗)−1. The fre-
quency ω∗ can be interpreted as the energy required to
break up the singlet which is formed for T → 0.

The calculation of the relaxation rate in equation (2)
also requires the temperature dependence of χ(ω, T ) (see
Ref. [51] for technical details of the finite-temperature
NRG). Im χ(ω, T ) is shown in Figure 4a for a fixed fill-
ing δ = 0.05. The suppression of the peak in Im χ(ω, T )
upon increasing temperature is consistent with the loss
of spectral weight of the coherent quasiparticle peak in
the spectral function (see also Fig. 5). The temperature
dependence of the relaxation rate 1/T1(T ) is now straight-
forwardly calculated from equation (2) and shown in
Figure 4b for three different fillings. A temperature scale
T ∗ can now be defined conveniently via the maximum in
1/T1(T ).
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Fig. 5. Temperature dependence of the f spectral function
for the periodic Anderson model with on–site hybridization,
U = 2, V = 0.5, nf ≈ 1, and nc ≈ 0.4. The inset focuses on
the quasiparticle peak.

Though we do not attempt to fit these numerical re-
sults directly to the experimental data, the overall qualita-
tive agreement with the data available for Gd1−ySryTiO3

is very good.
Let us now turn to the periodic Anderson model as a

model for the heavy–fermion formation in Kondo–lattice
systems [20]

H = εf

∑
iσ

f †
iσfiσ + U

∑
i

f †
i↑fi↑f

†
i↓fi↓

+
∑
kσ

εkc†kσckσ +
∑
ijσ

Vij

(
f †

iσcjσ + c†jσfiσ

)
. (8)

This model describes two sorts of fermionic degrees
of freedom, the more localized and strongly correlated
f -electrons which are coupled to a free conduction band
via a hybridization V . Only the f -electrons are subject to
a strong local Coulomb repulsion U .

Spectral functions for this model have already been
calculated within the DMFT (using the NRG-approach) in
reference [53]. Here we show the evolution of the spectral
function with increasing temperature for U = 2, V = 0.5,
nf ≈ 1, and nc ≈ 0.4 (see Fig. 5). On lowering the tem-
perature, a very sharp quasiparticle resonance develops in
the f spectral function with a width of the order of the
low-energy scale T ∗ ≈ 0.01.

The general features in the spectral functions are very
similar in both the Hubbard model and the periodic An-
derson model. The low-energy physics, in particular, is
described by a quasiparticle peak which is gradually sup-
pressed upon increasing temperature. We therefore ex-
pect the temperature and frequency dependence of the
dynamic spin susceptibility to be similar in both models
as well. This is indeed the case as has been shown in refer-
ence [54]. The temperature dependence of 1/T1 exhibits a
linear increase for small T and a maximum at a character-
istic temperature scale T ∗. The high–temperature regime,



406 The European Physical Journal B

however, shows some nonuniversal behaviour, consistent
with the experimental observation.

The low-temperature physics in both Hubbard model
and periodic Anderson model is that of the screening of
local moments, a screening which is perfect in the limit of
T → 0. This screening occurs below a certain temperature
scale T ∗. It does not, however, imply the existence of fully
developed moments at higher temperatures, because the
screening occurs both for small and large values of U . Nor
does it depend on whether the spin-degrees of freedom
are localized or not. This is clearly seen in the case of
the Hubbard model where the same electronic degrees of
freedom are responsible for transport and spin dynamics.

4 Summary

We discussed heavy–fermion formation as observed in
transition–metal oxides and in transition metals and com-
pared the results to those observed in 4f– and 5f–derived
heavy–fermion compounds. We specifically focused on dy-
namical aspects and presented results of the dynamic
susceptibility as probed in ESR and NMR experiments
via the temperature dependence of linewidth (ESR) and
spin–lattice relaxation rate (NMR). And while it is clear,
that in 4f– and 5f–derived heavy–fermion compounds the
Kondo effect gives the essentials of the underlying physics,
the routes to heavy fermions are certainly very differ-
ent in the case of transition–metal oxides and transition
metals. Magnetic frustration, or the closeness to either a
metal–to–insulator transition or a quantum critical point
are discussed as possible scenarios. For LiV2O4, even the
Kondo effect has been discussed as a possible origin for
the appearance of heavy quasiparticles. The calculation
of the dynamic susceptibility is carried out in the frame-
work of the Hubbard model and of the periodic Anderson
model, respectively. In both models a narrow quasiparti-
cle peak appears at low temperatures and energies result-
ing in strongly enhanced effective masses. It documents
that s–f on–site hybridization like in the periodic Ander-
son model and electronic correlations in systems close to
half conduction–band filling like in the Hubbard model
yield similar spectral densities and similar dynamic sus-
ceptibilities. In the calculations for the Hubbard model,
the temperature dependence of the relaxation rate shows
a very similar behaviour upon doping as in the experi-
ments on Gd1−ySryTiO3. This opens the possibility of a
qualitative (or even quantitative) understanding of ESR
and NMR measurements within calculations based on a
microscopic model — in contrast to phenomenological fits
which have been almost exclusively used in the literature
so far. To describe the dynamic susceptibilities in frus-
trated magnets, so far phenomenological spin–fluctuation
theories have to be utilized. Microscopic models still have
to be developed.
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Heil, B. Elschner, A. Loidl, Phys. Rev. B 57, 14344 (1998)



H.-A. Krug von Nidda et al.: Heavy fermions in transition metals and transition-metal oxides 407

20. A.C. Hewson, The Kondo Problem to Heavy Fermions
(Cambridge Univ. Press, Cambridge 1993)

21. D.L. Cox, N.E. Bickers, J.W. Wilkens, J. Appl. Phys. 57,
3166 (1985)

22. M. Heinrich, H.-A. Krug von Nidda, V. Fritsch, A. Loidl,
Phys. Rev. B 63, 193103 (2001)

23. M.J. Lysak, D.E. MacLaughlin, Phys. Rev. B 31, 6963
(1985); M. Coldea, H. Schäffer, V. Weissenberger, B.
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